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Background

Let L be a countable first-order language.

The “space of countable L-structures” is:

X :=
∏

n-ary rel R∈L
2N

n ×
∏

n-ary fn f ∈L
NNn

or:

X :=
⊔
N≤N

( ∏
n-ary rel R∈L

2N
n ×

∏
n-ary fn f ∈L

NNn

)

X :=
⊔
N⊆N

( ∏
n-ary rel R∈L

2N
n ×

∏
n-ary fn f ∈L

NNn

)
(topology on ⊆ N?)

or (for groups):

X := {K ⊆ ⟨N⟩ | K is a normal subgroup}

These are spaces of codes for L-structures, not L-structures themselves!
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X = {codes for L-structures}

: a nice (e.g., Polish) topol. space

{all L-structures}

: ???

“cts open”
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Étale structures

Let X be a topological space.

Definition An étale space over X is a topological space M equipped with a
continuous map p : M → X (the “projection”) which is a local homeomorphism:

▶ M =
⋃

i Si for open sections Si ⊆ M s.t. p|Si : Si → X is an open embedding.
“The fibers Mx := p−1(x) are discrete, continuously in x .”

Mx

M

X

p

x

Si
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Étale structures

Let X be a topological space, L be a first-order language.

Definition An étale L-structure M over X is:

▶ an underlying étale space p : M → X ;

▶ for each n-ary function symbol f ∈ L, a continuous map f M : Mn
X → M over X ;

▶ for each n-ary relation symbol R ∈ L, an open set RM ⊆ Mn
X .

Mx

M

X

p

x

Si



Examples of étale structures

▶ M = X × N

X =
∏

n-ary R∈L 2N
n ×

∏
n-ary f ∈LNNn

proj1

Iso(M) · {(x , a⃗) | ϕx(b⃗)} (ϕ uses ∧,¬)

= (∃z⃗ (ϕ(z⃗) ∧ “(y⃗ , z⃗) ∼= (a⃗, b⃗)”))M

⇝ Σ2 (Σ1 after Morleyizing ¬atomic)

▶ M = {(x = (N, . . . ), a) ∈ X × N | a ∈ N}

X =
⊔

N≤N(
∏

n-ary R∈L 2N
n ×

∏
n-ary f ∈LNNn

)

proj1

∃x0 · · · xn−1
∧

i ̸=j(xi ̸= xj)

⇝ Σ4 saturations

▶ same but with one-pt cptification topology on N = {0, 1, 2, . . . ,N}

⇝ Σ3

▶ Assume L is functional.
M = {(∼, a) | ∼ ∈ X , a ∈ ⟨N⟩/∼} (quotient of X × ⟨N⟩)

X = {∼ ⊆ ⟨N⟩2 = {L-terms over N}2 | ∼ is a congruence}

proj1

⇝ Σ1
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(. . . , Artin–Grothendieck–Verdier ’71, Makkai–Reyes ’77, Joyal–Tierney ’84, . . . )

topology étale model theory

cts map f : X → Y = “all L-strs” étale structure M → X

cts open f : X → Y (onto image) open U ⊆ Mn
X has Σ1 saturation

Iso(M) · U = ϕM (ϕ uses ∧,
∨
,∃)

ker(f ) = {(x1, x2) ∈ X 2 | f (x1) = f (x2)} Iso(M) = {(x1, x2, g) | g : Mx1
∼= Mx2}

= isomorphism groupoid of M

Polish Y = open quot of NN Π2 theory T ⇒ 2nd-ctbl étale M → NN

w/ Σ1 sat s.t. Mod(T ) = [{Mx}x ]∼=

cts open f onto image ⇒ image is Π0
2 2nd-ctbl étale M w/ Σ1 sat ⇒ Π2-ax’ble

∃∗f (A) = {y | ∃∗x ∈ f −1(y) (x ∈ A)}
⇒ f -invariant Σ0

α A ∈ f −1(Σ0
α)

A△ = {a⃗ ∈ Mn
x | ∃∗(y , x , g) ∈ Iso(M) (a⃗ ∈ gA)}

⇒ ∼=-invariant Σ0
α A = ϕM for Σα ϕ

Baire category theorem omitting types theorem

Y has quotient topology (Joyal–Tierney) T determined up to bi-interp.
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Theorem (C. 2023) For every second-countable étale structure M with Σ1 saturations
over a (quasi-)Polish X , the collection of fibers Mx is Π2-axiomatizable.

Proof is a combination of:
(Sierpinski, de Brecht) Open quotient of (q-)Polish is (q-)Polish.
(Alexandrov, de Brecht) (Q-)Polish subspace of second-countable is Π0

2.
(Ryll-Nardzewski, Suzuki) Atomic models are Π2-categorical.
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Theorem (C. 2023) For every second-countable étale structure M with Σ1 saturations
over a (quasi-)Polish X , every ∼=-invariant Σ0

α A ⊆ Mn
X is definable by a Σα ϕ.

This includes both the classical Lopez-Escobar theorem and a recent version for
“positive” formulas due to (Bazhenov–Fokina–Rossegger–Soskova–Vatev ’23).
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Speculations on continuous logic

A metric structure has an underlying complete metric space in place of an underlying
set, and (Lipschitz) [0, 1]-valued instead of 2-valued predicates.

Unlike in discrete logic, there is no obvious single canonical “space of structures”:

▶ structures on Urysohn sphere U (GK, EFPRTT, IM, CL)

▶ structures on closed subspaces of U
▶ structures on completions of N w/ pseudometric (BDNT, HMT)

A metric-étale space p : M → X is a “topometric bundle” whose fiberwise metrics
dx : M2

x → R “induce the topology on Mx , uniformly in x”.

We can extend large parts of the dictionary to metric-étale structures.
However, we are hampered by a lack of a pre-existing “continuous topos theory”; in
particular, the Joyal–Tierney theorem seems tricky.
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