Étale structures in countable model theory and descriptive set theory

Ronnie Chen

University of Michigan

August 22, 2023

Let \mathcal{L} be a countable first-order language.

Let ${\mathcal L}$ be a countable first-order language.

The "space of countable \mathcal{L} -structures" is:

$$X:=\prod_{\textit{n-ary rel}} 2^{\mathbb{N}^n} imes \prod_{\textit{n-ary fn}} \int_{f\in\mathcal{L}} \mathbb{N}^{\mathbb{N}^n}$$

Let \mathcal{L} be a countable first-order language.

The "space of countable \mathcal{L} -structures" is:

$$X := \prod_{n-\operatorname{ary rel}} 2^{\mathbb{N}^n} \times \prod_{n-\operatorname{ary fn}} \int_{f \in \mathcal{L}} \mathbb{N}^{\mathbb{N}^n}$$
$$X := \bigsqcup_{N < \mathbb{N}} \left(\prod_{n-\operatorname{ary rel}} R \in \mathcal{L}} 2^{N^n} \times \prod_{n-\operatorname{ary fn}} \int_{f \in \mathcal{L}} N^{N^n} \right)$$

or:

Let ${\mathcal L}$ be a countable first-order language.

The "space of countable \mathcal{L} -structures" is:

$$\begin{split} X &:= \prod_{n-\text{ary rel } R \in \mathcal{L}} 2^{\mathbb{N}^n} \times \prod_{n-\text{ary fn } f \in \mathcal{L}} \mathbb{N}^{\mathbb{N}^n} \\ X &:= \bigsqcup_{N \leq \mathbb{N}} \left(\prod_{n-\text{ary rel } R \in \mathcal{L}} 2^{N^n} \times \prod_{n-\text{ary fn } f \in \mathcal{L}} N^{N^n} \right) \\ X &:= \bigsqcup_{N \subseteq \mathbb{N}} \left(\prod_{n-\text{ary rel } R \in \mathcal{L}} 2^{N^n} \times \prod_{n-\text{ary fn } f \in \mathcal{L}} N^{N^n} \right) \quad \text{(topology on } \subseteq \mathbb{N}?) \end{split}$$

or:

or:

Let ${\mathcal L}$ be a countable first-order language.

The "space of countable \mathcal{L} -structures" is:

$$\begin{split} X &:= \prod_{n-\text{ary rel}} 2^{\mathbb{N}^n} \times \prod_{n-\text{ary fn}} \mathbb{N}^{\mathbb{N}^n} \\ X &:= \bigsqcup_{N \leq \mathbb{N}} \left(\prod_{n-\text{ary rel}} 2^{N^n} \times \prod_{n-\text{ary fn}} f_{\in \mathcal{L}} N^{N^n} \right) \\ X &:= \bigsqcup_{N \subseteq \mathbb{N}} \left(\prod_{n-\text{ary rel}} R_{\in \mathcal{L}} 2^{N^n} \times \prod_{n-\text{ary fn}} f_{\in \mathcal{L}} N^{N^n} \right) \quad \text{(topology on } \subseteq \mathbb{N}?) \end{split}$$

or (for groups):

 $X := \{ K \subseteq \langle \mathbb{N} \rangle \mid K \text{ is a normal subgroup} \}$

or:

Let \mathcal{L} be a countable first-order language.

The "space of countable \mathcal{L} -structures" is:

$$\begin{split} X &:= \prod_{n-\text{ary rel}} 2^{\mathbb{N}^n} \times \prod_{n-\text{ary fn}} f_{\in \mathcal{L}} \mathbb{N}^n \\ X &:= \bigsqcup_{N \leq \mathbb{N}} \left(\prod_{n-\text{ary rel}} R_{\in \mathcal{L}} 2^{N^n} \times \prod_{n-\text{ary fn}} f_{\in \mathcal{L}} N^{N^n} \right) \\ X &:= \bigsqcup_{N \subseteq \mathbb{N}} \left(\prod_{n-\text{ary rel}} R_{\in \mathcal{L}} 2^{N^n} \times \prod_{n-\text{ary fn}} f_{\in \mathcal{L}} N^{N^n} \right) \quad (\text{topology on } \subseteq \mathbb{N}?) \end{split}$$

or (for groups):

 $X := \{ K \subseteq \langle \mathbb{N} \rangle \mid K \text{ is a normal subgroup} \}$

These are spaces of **codes** for \mathcal{L} -structures, not \mathcal{L} -structures themselves!

$$X = \{ \text{codes for } \mathcal{L}\text{-structures} \}$$
$$\downarrow \\ \{ \text{all } \mathcal{L}\text{-structures} \}$$

Étale structures

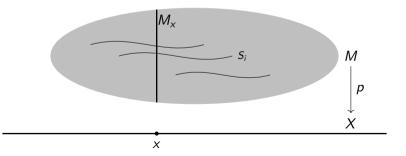
Let X be a topological space.

Étale structures

Let X be a topological space.

Definition An **étale space over** X is a topological space M equipped with a continuous map $p: M \to X$ (the "projection") which is a **local homeomorphism**:

▶ $M = \bigcup_i S_i$ for **open sections** $S_i \subseteq M$ s.t. $p|S_i : S_i \to X$ is an open embedding. "The fibers $M_x := p^{-1}(x)$ are discrete, continuously in x."

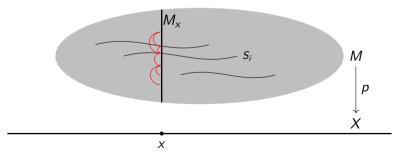


Étale structures

Let X be a topological space, \mathcal{L} be a first-order language.

Definition An étale \mathcal{L} -structure \mathcal{M} over X is:

- ▶ an underlying étale space $p: M \to X$;
- ▶ for each *n*-ary function symbol $f \in \mathcal{L}$, a continuous map $f^{\mathcal{M}} : M_X^n \to M$ over X;
- ▶ for each *n*-ary relation symbol $R \in \mathcal{L}$, an open set $R^{\mathcal{M}} \subseteq M_X^n$.



$$M = X \times \mathbb{N}$$

$$\downarrow \text{proj}_1$$

$$X = \prod_{n \text{-ary } R \in \mathcal{L}} 2^{\mathbb{N}^n} \times \prod_{n \text{-ary } f \in \mathcal{L}} \mathbb{N}^{\mathbb{N}^n}$$

$$M = X \times \mathbb{N}$$

$$\downarrow \text{proj}_1$$

$$X = \prod_{n \text{-ary } R \in \mathcal{L}} 2^{\mathbb{N}^n} \times \prod_{n \text{-ary } f \in \mathcal{L}} \mathbb{N}^{\mathbb{N}^n}$$

$$M = \{ (x = (N, \dots), a) \in X \times \mathbb{N} \mid a \in N \}$$

$$\downarrow \text{proj}_1$$

$$X = \bigsqcup_{N \leq \mathbb{N}} (\prod_{n \text{-ary } R \in \mathcal{L}} 2^{N^n} \times \prod_{n \text{-ary } f \in \mathcal{L}} N^{N^n})$$

$$M = X \times \mathbb{N}$$

$$\downarrow \text{proj}_1$$

$$X = \prod_{n-\text{ary } R \in \mathcal{L}} 2^{\mathbb{N}^n} \times \prod_{n-\text{ary } f \in \mathcal{L}} \mathbb{N}^{\mathbb{N}^n}$$

$$M = \{ (x = (N, \dots), a) \in X \times \mathbb{N} \mid a \in N \}$$

$$\downarrow \text{proj}_1$$

$$X = \bigsqcup_{N \leq \mathbb{N}} (\prod_{n-\text{ary } R \in \mathcal{L}} 2^{N^n} \times \prod_{n-\text{ary } f \in \mathcal{L}} N^{N^n})$$

 \blacktriangleright same but with one-pt cptification topology on $\overline{\mathbb{N}}=\{0,1,2,\ldots,\mathbb{N}\}$

$$M = X \times \mathbb{N}$$

$$\downarrow \text{proj}_{1}$$

$$X = \prod_{n-\text{ary } R \in \mathcal{L}} 2^{\mathbb{N}^{n}} \times \prod_{n-\text{ary } f \in \mathcal{L}} \mathbb{N}^{\mathbb{N}^{n}}$$

$$M = \{ (x = (N, ...), a) \in X \times \mathbb{N} \mid a \in N \}$$

$$\downarrow \text{proj}_{1}$$

$$X = \bigsqcup_{N \leq \mathbb{N}} (\prod_{n-\text{ary } R \in \mathcal{L}} 2^{N^{n}} \times \prod_{n-\text{ary } f \in \mathcal{L}} N^{N^{n}})$$

$$\text{same but with one-pt cptification topology on } \overline{\mathbb{N}} = \{0, 1, 2, ..., \mathbb{N}\}$$

$$\text{Assume } \mathcal{L} \text{ is functional.}$$

$$M = \{ (\sim, a) \mid \sim \in X, a \in \langle \mathbb{N} \rangle / \sim \} \quad (\text{quotient of } X \times \langle \mathbb{N} \rangle)$$

$$\downarrow \text{proj}_{1}$$

$$X = \{ \sim \subseteq \langle \mathbb{N} \rangle^{2} = \{ \mathcal{L} \text{-terms over } \mathbb{N} \}^{2} \mid \sim \text{ is a congruence} \}$$

topology	étale model theory
cts map $f:X o Y=$ "all $\mathcal L$ -strs"	étale structure $\mathcal{M} o X$

topology	étale model theory
cts map $f:X o Y=$ "all $\mathcal L$ -strs"	étale structure $\mathcal{M} o X$
cts open $f:X o Y$	

topology	étale model theory
cts map $f:X o Y =$ "all $\mathcal L$ -strs"	étale structure $\mathcal{M} o X$
cts open $f:X o Y$	

$$\ker(f) = \{ (x_1, x_2) \in X^2 \mid f(x_1) = f(x_2) \} \quad \mathsf{lso}(\mathcal{M}) = \{ (x_1, x_2, g) \mid g : \mathcal{M}_{x_1} \cong \mathcal{M}_{x_2} \} \\ = \mathsf{isomorphism groupoid of } \mathcal{M}$$

topology	étale model theory
cts map $f:X o Y=$ "all $\mathcal L$ -strs"	étale structure $\mathcal{M} o X$
cts open $f:X o Y$ (onto image)	$\begin{array}{l} \text{open } U\subseteq M_X^n \text{ has } \Sigma_1 \text{ saturation} \\ \text{Iso}(\mathcal{M})\cdot U=\phi^{\mathcal{M}} \ (\phi \text{ uses } \wedge, \bigvee, \exists) \end{array}$
$\ker(f) = \{(x_1, x_2) \in X^2 \mid f(x_1) = f(x_2)\}$	$lso(\mathcal{M}) = \{(x_1, x_2, g) \mid g : \mathcal{M}_{x_1} \cong \mathcal{M}_{x_2}\}$ = isomorphism groupoid of \mathcal{M}

$$M = X \times \mathbb{N} \qquad |so(\mathcal{M}) \cdot \{(x, \vec{a}) \mid \phi^{x}(\vec{b})\} \quad (\phi \text{ uses } \wedge, \neg) \\ \downarrow^{\text{proj}_{1}} = (\exists \vec{z} (\phi(\vec{z}) \wedge "(\vec{y}, \vec{z}) \cong (\vec{a}, \vec{b})"))^{\mathcal{M}} \\ X = \prod_{n-\text{ary } R \in \mathcal{L}} 2^{\mathbb{N}^{n}} \times \prod_{n-\text{ary } f \in \mathcal{L}} \mathbb{N}^{\mathbb{N}^{n}} \implies \Sigma_{2} (\Sigma_{1} \text{ after Morleyizing } \neg \text{ atomic}) \\ M = \{(x = (N, \dots), a) \in X \times \mathbb{N} \mid a \in N\} \\ \downarrow^{\text{proj}_{1}} \\ X = \bigsqcup_{N \leq \mathbb{N}} (\prod_{n-\text{ary } R \in \mathcal{L}} 2^{N^{n}} \times \prod_{n-\text{ary } f \in \mathcal{L}} N^{N^{n}}) \\ \text{same but with one-pt cptification topology on } \overline{\mathbb{N}} = \{0, 1, 2, \dots, \mathbb{N}\} \\ \text{Assume } \mathcal{L} \text{ is functional.} \\ M = \{(\sim, a) \mid \sim \in X, a \in \langle \mathbb{N} \rangle / \sim\} \quad (\text{quotient of } X \times \langle \mathbb{N} \rangle) \\ \downarrow^{\text{proj}_{1}} \\ X = \{\sim \subseteq \langle \mathbb{N} \rangle^{2} = \{\mathcal{L}\text{-terms over } \mathbb{N}\}^{2} \mid \sim \text{ is a congruence}\} \end{cases}$$

$$M = X \times \mathbb{N} \qquad |so(\mathcal{M}) \cdot \{(x, \vec{a}) \mid \phi^{x}(\vec{b})\} \quad (\phi \text{ uses } \wedge, \neg) \\ \downarrow^{\text{proj}_{1}} = (\exists \vec{z} (\phi(\vec{z}) \wedge "(\vec{y}, \vec{z}) \cong (\vec{a}, \vec{b})"))^{\mathcal{M}} \\ X = \prod_{n-\text{ary } R \in \mathcal{L}} 2^{\mathbb{N}^{n}} \times \prod_{n-\text{ary } f \in \mathcal{L}} \mathbb{N}^{\mathbb{N}^{n}} \quad \rightsquigarrow \Sigma_{2} (\Sigma_{1} \text{ after Morleyizing } \neg \text{ atomic}) \\ M = \{(x = (N, \dots), a) \in X \times \mathbb{N} \mid a \in N\} \qquad \exists x_{0} \cdots x_{n-1} \wedge_{i \neq j} (x_{i} \neq x_{j}) \\ \downarrow^{\text{proj}_{1}} \qquad \rightsquigarrow \Sigma_{4} \text{ saturations} \\ X = \bigsqcup_{N \leq \mathbb{N}} (\prod_{n-\text{ary } R \in \mathcal{L}} 2^{\mathbb{N}^{n}} \times \prod_{n-\text{ary } f \in \mathcal{L}} N^{\mathbb{N}^{n}}) \\ \bullet \text{ same but with one-pt cptification topology on } \overline{\mathbb{N}} = \{0, 1, 2, \dots, \mathbb{N}\} \qquad \rightsquigarrow \Sigma_{3} \\ \bullet \text{ Assume } \mathcal{L} \text{ is functional.} \\ M = \{(\sim, a) \mid \sim \in X, a \in \langle \mathbb{N} \rangle / \sim\} \quad (\text{quotient of } X \times \langle \mathbb{N} \rangle) \qquad \rightsquigarrow \Sigma_{1} \\ \downarrow^{\text{proj}_{1}} \\ X = \{\sim \subseteq \langle \mathbb{N} \rangle^{2} = \{\mathcal{L}\text{-terms over } \mathbb{N}\}^{2} \mid \sim \text{ is a congruence}\} \end{cases}$$

cts map $f: X \to Y =$ "all \mathcal{L} -strs"

cts open $f: X \to Y$ (onto image)

 $\ker(f) = \{(x_1, x_2) \in X^2 \mid f(x_1) = f(x_2)\}$

Polish Y = open quot of $\mathbb{N}^{\mathbb{N}}$

étale structure $\mathcal{M} o X$

open $U \subseteq M_X^n$ has Σ_1 saturation

 $\mathsf{lso}(\mathcal{M}) = \{(x_1, x_2, g) \mid g : \mathcal{M}_{x_1} \cong \mathcal{M}_{x_2}\}$

 $\begin{array}{l} \Pi_2 \text{ theory } \mathcal{T} \Rightarrow 2 n d\text{-ctbl \'etale } \mathcal{M} \rightarrow \mathbb{N}^{\mathbb{N}} \\ \mathsf{w} / \ \Sigma_1 \text{ sat s.t. } \mathsf{Mod}(\mathcal{T}) = [\{\mathcal{M}_x\}_x]_{\cong} \end{array}$

cts map $f: X \to Y =$ "all *L*-strs" cts open $f: X \to Y$ (onto image)

Polish Y = open quot of $\mathbb{N}^{\mathbb{N}}$

étale structure $\mathcal{M} \to X$

open $U \subseteq M_X^n$ has Σ_1 saturation

 $\ker(f) = \{(x_1, x_2) \in X^2 \mid f(x_1) = f(x_2)\} \quad |\operatorname{so}(\mathcal{M}) = \{(x_1, x_2, g) \mid g : \mathcal{M}_{x_1} \cong \mathcal{M}_{x_2}\}$

$$\begin{array}{l} \Pi_2 \text{ theory } \mathcal{T} \Rightarrow 2 n d\text{-ctbl {\'etale }} \mathcal{M} \rightarrow \mathbb{N}^{\mathbb{N}} \\ \mathsf{w} / \ \Sigma_1 \text{ sat s.t. } \mathsf{Mod}(\mathcal{T}) = [\{\mathcal{M}_x\}_x]_{\cong} \end{array}$$

2nd-ctbl étale \mathcal{M} w/ Σ_1 sat $\Rightarrow \Pi_2$ -ax'ble

Theorem (C. 2023) For every second-countable étale structure \mathcal{M} with Σ_1 saturations over a (quasi-)Polish X, the collection of fibers \mathcal{M}_{\times} is Π_{2} -axiomatizable.

topology	étale model theory
$cts map \ f: X \to Y = \text{``all } \mathcal{L}-strs''$	étale structure $\mathcal{M} o X$
cts open $f: X \to Y$ (onto image)	open $U\subseteq M_X^n$ has Σ_1 saturation
$\ker(f) = \{(x_1, x_2) \in X^2 \mid f(x_1) = f(x_2)\}$	$Iso(\mathcal{M}) = \{(x_1, x_2, g) \mid g : \mathcal{M}_{x_1} \cong \mathcal{M}_{x_2}\}$
Polish $Y=$ open quot of $\mathbb{N}^{\mathbb{N}}$	$ \begin{array}{l} \Pi_2 \text{ theory } \mathcal{T} \Rightarrow 2nd\text{-ctbl \'etale } \mathcal{M} \rightarrow \mathbb{N}^{\mathbb{N}} \\ w / \ \Sigma_1 \text{ sat s.t. } Mod(\mathcal{T}) = [\{\mathcal{M}_x\}_x]_{\cong} \end{array} \end{array} $
cts open f onto image \Rightarrow image is Π^0_2	2nd-ctbl étale ${\cal M}$ w/ Σ_1 sat \Rightarrow Π_2 -ax'ble

Theorem (C. 2023) For every second-countable étale structure \mathcal{M} with Σ_1 saturations over a (quasi-)Polish X, the collection of fibers \mathcal{M}_x is Π_2 -axiomatizable.

Proof is a combination of: (Sierpinski, de Brecht) Open quotient of (q-)Polish is (q-)Polish. (Alexandrov, de Brecht) (Q-)Polish subspace of second-countable is Π_2^0 . (Ryll-Nardzewski, Suzuki) Atomic models are Π_2 -categorical.

étale structure $\mathcal{M}
ightarrow X$

open $U \subseteq M_X^n$ has Σ_1 saturation

 $\mathsf{Iso}(\mathcal{M}) = \{(x_1, x_2, g) \mid g : \mathcal{M}_{x_1} \cong \mathcal{M}_{x_2}\}$

 $\begin{array}{l} \Pi_2 \text{ theory } \mathcal{T} \Rightarrow 2 n d\text{-ctbl \'etale } \mathcal{M} \rightarrow \mathbb{N}^{\mathbb{N}} \\ \mathsf{w} / \ \Sigma_1 \text{ sat s.t. } \mathsf{Mod}(\mathcal{T}) = [\{\mathcal{M}_x\}_x]_{\cong} \end{array}$

cts open f onto image \Rightarrow image is Π_2^0

$$\exists_f^*(A) = \{ y \mid \exists^* x \in f^{-1}(y) \, (x \in A) \}$$

2nd-ctbl étale \mathcal{M} w/ Σ_1 sat $\Rightarrow \Pi_2$ -ax'ble

étale structure $\mathcal{M}
ightarrow X$

open $U \subseteq M_X^n$ has Σ_1 saturation

 $\mathsf{lso}(\mathcal{M}) = \{(x_1, x_2, g) \mid g : \mathcal{M}_{x_1} \cong \mathcal{M}_{x_2}\}$

 $\begin{array}{l} \Pi_2 \text{ theory } \mathcal{T} \Rightarrow 2 n d\text{-ctbl {\'etale }} \mathcal{M} \rightarrow \mathbb{N}^{\mathbb{N}} \\ \text{w} / \ \Sigma_1 \text{ sat s.t. } \text{Mod}(\mathcal{T}) = [\{\mathcal{M}_x\}_x]_{\cong} \end{array}$

cts open f onto image \Rightarrow image is Π_2^0

$$\exists_f^*(A) = \{ y \mid \exists^* x \in f^{-1}(y) \ (x \in A) \}$$

$$\Rightarrow f\text{-invariant } \Sigma^0_\alpha \ A \in f^{-1}(\Sigma^0_\alpha)$$

2nd-ctbl étale \mathcal{M} w/ Σ_1 sat $\Rightarrow \Pi_2$ -ax'ble

cts open f onto image \Rightarrow image is Π_2^0

$$\exists_f^*(A) = \{ y \mid \exists^* x \in f^{-1}(y) \, (x \in A) \}$$

$$\Rightarrow f \text{-invariant } \Sigma_{\alpha}^0 \, A \in f^{-1}(\Sigma_{\alpha}^0)$$

étale structure $\mathcal{M} o X$

open $U \subseteq M_X^n$ has Σ_1 saturation

 $\ker(f) = \{(x_1, x_2) \in X^2 \mid f(x_1) = f(x_2)\} \quad \operatorname{Iso}(\mathcal{M}) = \{(x_1, x_2, g) \mid g : \mathcal{M}_{x_1} \cong \mathcal{M}_{x_2}\}$

$$\begin{array}{l} \Pi_2 \text{ theory } \mathcal{T} \Rightarrow 2 n d\text{-ctbl {\'etale }} \mathcal{M} \rightarrow \mathbb{N}^{\mathbb{N}} \\ \mathsf{w} / \ \Sigma_1 \text{ sat s.t. } \mathsf{Mod}(\mathcal{T}) = [\{\mathcal{M}_x\}_x]_{\cong} \end{array}$$

2nd-ctbl étale ${\mathcal M}$ w/ Σ_1 sat $\Rightarrow \Pi_2\text{-ax'ble}$

 $A^{ riangle} = \{ ec{a} \in M^n_x \mid \exists^*(y, x, g) \in \mathsf{Iso}(\mathcal{M}) \, (ec{a} \in gA) \}$

étale structure $\mathcal{M} o X$

open $U \subseteq M_X^n$ has Σ_1 saturation

 $\mathsf{lso}(\mathcal{M}) = \{(x_1, x_2, g) \mid g : \mathcal{M}_{x_1} \cong \mathcal{M}_{x_2}\}$

$$\begin{array}{l} \Pi_2 \text{ theory } \mathcal{T} \Rightarrow 2 \text{nd-ctbl étale } \mathcal{M} \rightarrow \mathbb{N}^{\mathbb{N}} \\ \text{w} / \ \Sigma_1 \text{ sat s.t. } \text{Mod}(\mathcal{T}) = [\{\mathcal{M}_x\}_x]_{\cong} \end{array}$$

2nd-ctbl étale \mathcal{M} w/ Σ_1 sat $\Rightarrow \Pi_2$ -ax'ble

cts open f onto image \Rightarrow image is Π_2^0

 $\exists_{f}^{*}(A) = \{ y \mid \exists^{*}x \in f^{-1}(y) \ (x \in A) \}$ $\Rightarrow f \text{-invariant } \Sigma_{\alpha}^{0} A \in f^{-1}(\Sigma_{\alpha}^{0})$ $A^{\triangle} = \{ \vec{a} \in M_{x}^{n} \mid \exists^{*}(y, x, g) \in \operatorname{Iso}(\mathcal{M}) \ (\vec{a} \in gA) \}$ $\Rightarrow \cong \text{-invariant } \Sigma_{\alpha}^{0} A = \phi^{\mathcal{M}} \text{ for } \Sigma_{\alpha} \phi$

Theorem (C. 2023) For every second-countable étale structure \mathcal{M} with Σ_1 saturations over a (quasi-)Polish X, every \cong -invariant $\Sigma^0_{\alpha} A \subseteq M^n_X$ is definable by a $\Sigma_{\alpha} \phi$.

This includes both the classical Lopez-Escobar theorem and a recent version for "positive" formulas due to (Bazhenov–Fokina–Rossegger–Soskova–Vatev '23).

cts open f onto image \Rightarrow image is Π_2^0

$$\exists_f^*(A) = \{y \mid \exists^* x \in f^{-1}(y) \ (x \in A)\}$$

 $\Rightarrow f$ -invariant $\Sigma^0_{\alpha} \ A \in f^{-1}(\Sigma^0_{\alpha})$

Baire category theorem

étale structure $\mathcal{M} o X$

open $U \subseteq M_X^n$ has Σ_1 saturation

 $\ker(f) = \{(x_1, x_2) \in X^2 \mid f(x_1) = f(x_2)\} \quad \operatorname{Iso}(\mathcal{M}) = \{(x_1, x_2, g) \mid g : \mathcal{M}_{x_1} \cong \mathcal{M}_{x_2}\}$

$$\begin{array}{l} \Pi_2 \text{ theory } \mathcal{T} \Rightarrow 2 n d\text{-ctbl {\'etale }} \mathcal{M} \rightarrow \mathbb{N}^{\mathbb{N}} \\ \mathsf{w} / \ \Sigma_1 \text{ sat s.t. } \mathsf{Mod}(\mathcal{T}) = [\{\mathcal{M}_x\}_x]_{\cong} \end{array}$$

2nd-ctbl étale \mathcal{M} w/ Σ_1 sat $\Rightarrow \Pi_2$ -ax'ble

 $\begin{array}{l} \mathcal{A}^{\bigtriangleup} = \{ \vec{a} \in \mathcal{M}_{x}^{n} \mid \exists^{*}(y, x, g) \in \mathsf{Iso}(\mathcal{M}) \, (\vec{a} \in g\mathcal{A}) \} \\ \Rightarrow \cong \text{-invariant } \Sigma_{\alpha}^{0} \, \mathcal{A} = \phi^{\mathcal{M}} \, \text{ for } \Sigma_{\alpha} \, \phi \end{array}$

omitting types theorem

cts open f onto image \Rightarrow image is Π_2^0

 $\exists_f^*(A) = \{ y \mid \exists^* x \in f^{-1}(y) \, (x \in A) \}$ $\Rightarrow f \text{-invariant } \Sigma^0_\alpha \, A \in f^{-1}(\Sigma^0_\alpha)$

Baire category theorem

Y has quotient topology

étale structure $\mathcal{M} o X$

open $U \subseteq M_X^n$ has Σ_1 saturation

 $\mathsf{lso}(\mathcal{M}) = \{(x_1, x_2, g) \mid g : \mathcal{M}_{x_1} \cong \mathcal{M}_{x_2}\}$

 $\begin{array}{l} \Pi_2 \text{ theory } \mathcal{T} \Rightarrow 2 n d\text{-ctbl {\'etale }} \mathcal{M} \rightarrow \mathbb{N}^{\mathbb{N}} \\ \text{w} / \ \Sigma_1 \text{ sat s.t. } \text{Mod}(\mathcal{T}) = [\{\mathcal{M}_x\}_x]_{\cong} \end{array}$

2nd-ctbl étale $\mathcal M$ w/ Σ_1 sat \Rightarrow $\Pi_2\text{-}\mathsf{ax'ble}$

 $\begin{array}{l} \mathcal{A}^{\bigtriangleup} = \{\vec{a} \in \mathcal{M}_{x}^{n} \mid \exists^{*}(y, x, g) \in \mathsf{lso}(\mathcal{M}) \, (\vec{a} \in g\mathcal{A}) \} \\ \Rightarrow \cong \text{-invariant } \Sigma^{0}_{\alpha} \, \mathcal{A} = \phi^{\mathcal{M}} \, \text{ for } \Sigma_{\alpha} \, \phi \end{array}$

omitting types theorem

(Joyal–Tierney) \mathcal{T} determined up to bi-interp.

A **metric structure** has an underlying complete metric space in place of an underlying set, and (Lipschitz) [0, 1]-valued instead of 2-valued predicates.

A **metric structure** has an underlying complete metric space in place of an underlying set, and (Lipschitz) [0, 1]-valued instead of 2-valued predicates.

Unlike in discrete logic, there is no obvious single canonical "space of structures":

- ▶ structures on Urysohn sphere U (GK, EFPRTT, IM, CL)
- \blacktriangleright structures on closed subspaces of $\mathbb U$
- ▶ structures on completions of \mathbb{N} w/ pseudometric (BDNT, HMT)

A **metric structure** has an underlying complete metric space in place of an underlying set, and (Lipschitz) [0, 1]-valued instead of 2-valued predicates.

Unlike in discrete logic, there is no obvious single canonical "space of structures":

- ▶ structures on Urysohn sphere U (GK, EFPRTT, IM, CL)
- \blacktriangleright structures on closed subspaces of $\mathbb U$
- ▶ structures on completions of \mathbb{N} w/ pseudometric (BDNT, HMT)

A metric-étale space $p: M \to X$ is a "topometric bundle" whose fiberwise metrics $d_x: M_x^2 \to \mathbb{R}$ "induce the topology on M_x , uniformly in x".

A **metric structure** has an underlying complete metric space in place of an underlying set, and (Lipschitz) [0, 1]-valued instead of 2-valued predicates.

Unlike in discrete logic, there is no obvious single canonical "space of structures":

- ▶ structures on Urysohn sphere U (GK, EFPRTT, IM, CL)
- \blacktriangleright structures on closed subspaces of $\mathbb U$
- ▶ structures on completions of \mathbb{N} w/ pseudometric (BDNT, HMT)

A metric-étale space $p: M \to X$ is a "topometric bundle" whose fiberwise metrics $d_x: M_x^2 \to \mathbb{R}$ "induce the topology on M_x , uniformly in x".

We can extend large parts of the dictionary to metric-étale structures. However, we are hampered by a lack of a pre-existing "continuous topos theory"; in particular, the Joyal–Tierney theorem seems tricky.